• Unique filtration concept
• Safe handling of large range of powders
• Ideal for toxic, hygroscopic or explosive powders < 1 mJ
• Oxygen exclusion

• ATEX compliant
• Eliminates gravity charging
• Contained
• Optimial safety and hygiene
• Optimizes processes and reduces batch time
PTS Powder Transfer System® is an exceptionally effective and reliable method for transferring and dosing both dry and wet powders and granules. Its unique filtration concept with a flat membrane makes it the only vacuum dense-phase system available on the market today, which can be fully sterilized.

PTS challenges convention, using both vacuum and pressure to move powders as if they were liquid, dispensing with the need for gravity charging, making multi floor processes a requirement of the past.

The system is a significant enhancement to any process, providing total containment where necessary, but always speeding up production whilst improving safety and hygiene. Batch times can be substantially reduced and existing process steps can be linked to each other.

There are currently over 5000 Powder Transfer Systems operational worldwide.

Design
- AISI type 316L stainless steel, electropolished
- 3 or 6 bars design pressure
- DIN or ANSI flanges

Features
- Empties or fills all process equipment (including reactors, dryers and centrifuges)
- Transfers all powders (sticky, fine, non-free flowing, hygroscopic, humid, etc)
- Safe transport of toxic < 1μg/m³ dust or explosive powders < 1mJ
- Charges directly into closed vessels under vacuum or pressure
- Prevents dust creation
- Removes oxygen from powder before entering into the process
- Charges in the presence of solvents
- No product retention
- No particle damages
- No segregation
- Total containment
- Easy to clean, no dismantling
- cGMP conform
- ATEX compliant (including zones 0/20)

Options
- Various materials (HC22, internal coating, plastic, etc.)
- CIP/SIP
- Hygienic, sterile unit
- Explosion proof design 10 bars
- Portable unit

Dimensions

<table>
<thead>
<tr>
<th>PTS</th>
<th>50</th>
<th>80</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>h1</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>850</td>
</tr>
<tr>
<td>h2</td>
<td>460</td>
<td>570</td>
<td>640</td>
<td>780</td>
<td>780</td>
<td>820</td>
<td>820</td>
<td>1100</td>
</tr>
</tbody>
</table>

Maximum conveying capacities (l/h) depending on transfer distance and powder characteristics.